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Abstract. Computing solutions to systems of linear equations remains the dominant cost for
large-scale implicit finite element calculations, especially in three-dimensional applications. Direct’
methods can easily require prohibitively large amounts of supercomputer CPU and storage, even for
relatively coarse meshes. Iterative procedures avoiding the formation and factorization of a global
system of equations can circumvent this difficulty. Element-by-element (EBE) preconditioning
techniques are examined in the context of the production nonlinear solid mechanics code NIKE3D.
The recently introduced concept of a fractal dimension of a finite element mesh is reviewed, and
proves useful in characterizing the efficiency of this iterative algorithm with respect to a variable
band, active column direct method. Sample calculations using a CRAY X-MP/48 with Solid-state
Storage Device (SSD) illustrate the performance and range of applicability of the EBE algorithms
considered. In addition to continuum models, results are also presented for analyses utilizing shell

elements and contact/impact algorithms.

Introduction. Solution of linear systems of equations remains the dominant
computational cost in large-scale implicit finite element calculations, particularly
in three-dimensional applications. For linear analyses with a few ten-thousands of
unknowns, direct equation solving typically consumes over ninety percent of total
CPU usage and entails massive storage requirements. These well-known difficulties
have inspired the study and development of iterative methods, and the ongoing
growth of parallel computation further stimulates this research.

The application of iterative methods and preconditioners with a global data
base, for example, Gauss-Seidel, SSOR and Incomplete Cholesky, suffer from a
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major drawback for finite element calculations in solid and structural mechan-
ics: mapping such global operators onto multiprocessor architectures remains a
nontrivial problem for the complex meshes often required in engineering applica-
tions. Indeed, this problem remains a barrier to the enhancement of direct solution
methods via parallel processing. A contrasting philosophy aspires to utilize the
local data structure inherent in finite element formulations and implementations.
Element-by-element (EBE) methods were first introduced by [Hughes 8%a] as a
means of implicit time-integration for heat conduction, and were viewed as a nat-
ural generalization of the operator splitting methods developed primarily for finite
difference methods. Based upon this work, Ortiz, Pinsky and Taylor [Ortiz 89]
developed a novel time-stepping scheme for second-order systems. While uncon-
ditionally stable and formally second-order accurate, these algorithms displayed
unacceptable spatial truncation errors in some test problems. Subsequent efforts
shifted to using EBE procedures for solving systems of linear equations emanat-
ing from standard time-integration schemes [Hughes 83b]. In particular, the EBE
procedure has been recognized as an effective preconditioner for use with the con-
jugate gradients algorithm as an iterative driver [Hughes 83¢,84a,87, Nour-Omid
85, Winget 85).

This paper presents an overview of two element-by-element preconditioned
conjugate gradients (EBE/PCG) algorithms currently under study. These pro-
cedures are being tested within the production nonlinear stress analysis code
NIKE3D [Hallquist 84] developed at Lawrence Livermore National Laboratory.
NIKE’s nonlinear equation solving strategy is first summarized and the Crout
EBE/PCG algorithm reviewed. The extension of this methodology to NIKE’s
contact/impact algorithms is presented, and numerical examples computed on a
CRAY X-MP/48 with 134 megaword Solid-state Storage Device (SSD) using both
continuum and shell elements illustrate its performance. Motivated by a desire to
reduce the element data base, we re-examine the symmetrized Gauss-Seidel EBE
preconditioner, which requires only half the storage of the Crout version. Sam-
ple analyses contrast its performance with the other equation solving algorithms
considered.

NIKE’s Nonlinear Iteration Strategy. A standard weak form of the initial
boundary value problem of solid mechanics serves as the basis for a finite element
formulation in the spatial domain, leading to the semi-discrete, and in general
nonlinear, matrix equation of motion:

Ma + Fint — Fext,

where M is the mass matrix, a is the nodal acceleration vector, and Fi®* and F¢**
are the vectors of internal and external nodal forces, respectively. The internal
forces depend upon the nodal displacement vector d, typically via an inelastic,
rate constitutive model, e.g., see [Hughes 84b]. Application of an implicit time-
integration algorithm [Newmark 59] to the semi-discrete equation of motion gives
rise to a nonlinear algebraic equation at each time step. NIKE utilizes a number
of quasi-Newton algorithms to solve this nonlinear algebraic equation. All require
the solution of the linear system

K@dY,)adS = r@))), (1)



FULLY VECTORIZED EBE PRECONDITIONERS 263

where the subscripts refer to the time step number, the superscripts refer to the

number of iterations within the current step, f((dg:ll) is a symmetric, positive-
definite, approximate tangent matrix derived from quasi-Newton updates of a
previously formed effective stiffness matrix K(df,’_)H), J <, Adf::ll ) is a vec-
tor of unknown displacement increments, and R(df:_}_l) is the residual, or out-of-
balance force. Direct solutions are performed by FISSLE, a vectorized variable
band, active column solver developed by R. L. Taylor and S. J. Sackett [Tay-

lor 81). Equation (1) is solved repeatedly with an auxiliary line search until

|l si1 Adf:_tll)” < én m;x ||s,~Adf£_l Il, where s is the search parameter and typically

8N € [107%,1073), at which time convergence is presumed and the displacement
is updated: dpy1 = dn + 2; s,'AdS:_)H. If the residual begins to diverge, i.e.,

||R(d$:_':ll))|| > ||R(d£:_),_1)||, the stiffness matrix is reformed as a function of df:ll

and nonlinear iteration resumed.

Modified Preconditioned Conjugate Gradients. The following linear itera-
tion procedure, based upon the conjugate gradients algorithm [Hestenes 52], may
be employed whenever NIKE’s nonlinear iteration procedure requires the solution
of a linear system. For conciseness, subsequent references to iteration will imply
linear iteration. To simplify notation we consider the N4 X N, matrix equation
Ax = b, where A is a symmetric, positive-definite coefficient matrix.

Step 1. Initialize and solve uncoupled equations:

m=10 (2)
Xo=0 3)
g = b (4)

for y =1,2,...,Ng,
if Ai; = 0 for all i # j then

Tj= A;jlrj (5)
ri= (6)
endif
Po =20 = B7'rg (7
Step 2. Line search to update solution and residual:

= fm Zm (8)

*™ = Pm - ApPnm
Xm+1 = Xm + @mPm (9)
Fm41 =Tm — mAPm (10)

Step 3. Check convergence:
if ||emta]] < 6Lroll return

Step 4. Compute new conjugate search direction:

Zm4l — B_ll‘m+1 (11)
fn = St (12)

Pm+1 = Zm+1 + ﬂum (13)
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Go to Step 2.

Remark 1. The initialization operations of equations (5) and (6) arise
from NIKE’s treatment of nonzero displacement boundary conditions.
These degrees of freedom are maintained as “active” diagonal equations
in the system, which are then solved trivially when a direct method is
used. Although a suitably defined preconditioner B will replicate this
behavior during the solution of Bz, = ry, the subsequent line search may
scale the boundary displacements from the correct values. Experience
has indicated very slow convergence-potentially to an incorrect solution—
when this is the case. The present initialization serves to contract the
search space to the remaining unspecified degrees of freedom. With
this modification, the algorithm is applicable to systems with blocks of
diagonal equations, as would arise from a mixed implicit-explicit time-
integration scheme [Hughes 79].

Crout Element-by-Element Preconditioner. The choice of an appropriate
preconditioner B is essential for the practical application of the PCG algorithm.
We desire B! to approximate A~! in the sense that the condition number
C(B~1A) — 1 while retaining a computationally efficient structure. A partic-
ularly simple preconditioner is diagonal scaling, i.e., B = diag(A), also known
as Jacobi acceleration. This preconditioner may be realized by regularizing the
system of equations with the global diagonal W = diag(A):

W12AW—1/2 Wl/2x = W—1/2p, (15)

resulting in the transformed system

Ax =b. (16)

This system is solved with standard conjugate gradients, i.e, we take B = I,
and then the solution to the original system is recovered: x = W~1/2%. In
addition to automatically embedding diagonal scaling into the iterative driver, this
regularization nondimensionalizes the equation system, ensuring that the residual
norm used to monitor convergence is well-defined. Therefore, all of our iterative
algorithms are poised in this transformed system.

Element-by-element preconditioners are motivated by a desire to maintain
the element-based data structure of current finite element codes. For the Crout
EBE preconditioner, we utilize the product decomposition

Ng Ny 1

B=JJc x [[oe x [ (17)
e=1 e=1 e=Ng

where

L5 = £5(A%,P9) = (P)TL,[PA*(P*)TIP*,
D = Dy(A%,P) = (P D, [PA*(P)TIP*,
U = U (A%, Pe) = (P)TU,[PA*(P*)T|P*,
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and Ng; is the number of elements in the mesh. The reversed element order in the
third product of (17) results in B being symmetric. If we denote the eth element’s
contribution to the global matrix A by Ae¢, then A® is the Winget regularized
element matriz:

A =1+ (A°—W°), (18)
We = diag(A*). (19)

The regularization ensures A® is positive-definite, hence the Crout factorization
(Pe)TL,[-]Dp[-JU,[-]P¢ is well-defined. P* is a permutation matrix whose role is
to interchange rows and columns of A® such that they are consistent with the
“local” nodal ordering. The element matrices P¢A¢(P¢)T and Crout factors D[]
and U,[:] are computed each time A is formed in the nonlinear iteration.

A fully vectorized implementation of the Crout EBE preconditioner is op-
erational within NIKE3D and described in detail in [Hughes 87]. Fundamental
to successful vectorization is a reordering of the elements at the beginning of
execution into a series of internally disjoint blocks, i.e., within each block no
elements share common degrees of freedom. This permits the element forward
reductions and backsubstitutions to be calculated “in paralle]” within a block
via vector pipelining. No optimization is performed with respect to average
block size or inter-element communication, but the procedure appears applica-
ble to any mesh topology. For logically regular meshes the algorithm produces
a classic “checkerboard” reordering. This is analogous to the domain decom-
position used to map EBE onto a Hypercube parallel processor [Lyzenga 87),
so although the present PCG implementation does not multitask the four pro-
cessors within the X-MP, this extension should be straightforward. Finally, it
should be noted that the element matrices are naturally formed in their local or-
dering, i.e., P*A*(P*)7 is computed directly prior to regularization and factoriza-
tion. The remaining permutation matrices are a notational convenience indicating
gather/scatter operations.

Extensions to Penalized Contact/Impact Algorithms. The ability to model
contact/impact between unbonded material interfaces is essential for the realistic
analysis of many mechanical assemblies. Combining a very flexible geometric
representation with the algorithmic simplicity of penalized constraints, NIKE3D
has a very general “slidesurface” capability able to represent tied interfaces (for
bonded materials or mesh transitions) and interfaces opening and/or closing as
dictated by the global equations of motion. For a detailed description see [Hallguist
85].

As an illustration we consider the symmetry plane option, which may be con-
sidered a “one-sided” tied slidesurface. The analyst defines the desired symmetry
plane via a unit outward normal vector n whose tail lies on the plane and assigns
a list of nodes to be constrained to lie upon the plane throughout the analysis.
Each such node engenders a penalty element having the local representation

k*=10°K n®n (20)

where K is a stiffness based upon the maximum bulk modulus among all materials
in the mesh and the geometry of the largest and smallest elements lying on the
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symmetry plane. The outer product n® n generates a 3 x 3 matrix and the factor
of 108 is NIKE’s default penalty parameter.

General slidesurfaces generate 15 x 15 penalty elements; each node on one side
of the surface couples to the four nodes of the nearest “master” element belonging
to the opposing surface. The stiffness K is a function of the bulk modulus of that
specific master element. For tied slidesurfaces NIKE uses a penalty parameter of
102, while opening/closing interfaces use a penalty of 1. Thus general slidesurfaces
do not create nearly as much ill-conditioning as symmetry planes.

For direct solution methods, the penalty element matrix is assembled into
the global coefficient matrix by the standard FEM procedure. The corresponding
extension to the Crout EBE preconditioner leads to

Ng Nset Nel Niel
B=]Izs x I14 < T2 < I12; ~ HU’X H e
e=1 =1 e=1 s=1 Nyer

where N, is the number of symmetry plane/slidesurface penalty elements and
L;DyU, is the Crout factorization of a locally-ordered, Winget regularized penalty
element. We refer to the above definition of B as the interior Crout EBE precon-

ditioner, as contrasted with the ezterior version

Nyet Nset

B= HvxIpfoWxIperwa Hu’ (22)

e=1 e=1 e=Ny s=N,

The interior form was chosen for inclusion in NIKE3D due to its marginally better
performance relative to the exterior version as observed in numerical experiments
with the two-dimensional code NIKE2D [Hallquist 85].

Fractal Dimension of a Finite Element Mesh. Before discussing our compu-
tational experience with the EBE/PCG algorithm, we wish to review the recently
introduced concept of the fractal dimension of a mesh [Hughes 87). Traditionally,
a mesh is said to be n-dimensional if it is composed of n-dimensional elements.
Hence a mesh consisting of a long strip of three-dimensional continuum elements
is labelled a three-dimensional mesh. Such nomenclature obscures a key measure
of the relative efficiency of iterative and direct solution algorithms.

Definition. Given a mesh containing three-dimensional, eight-node
brick continuum elements, consider three meshes with equal numbers
of active degrees of freedom: a strip of elements connected on end, a
square with one element through the thickness, and a cube. We refer to
these as the one-, two- and three-dimensional reference meshes. For each
reference mesh we compute the total profile storage, or “fill”, needed to
hold the associated global matrix A. Then the fill for the given mesh
determines a fractal dimension dj:

If fill < fillyp

_ fill — fillip
!'= Fillyp - fillip
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If fill > fillyp
1l —~ fill
dp= JH=Silln o (24)
fillsp — fillop

For simplicity, the fill for each reference mesh is computed using its peak band-
width. NIKE’s four-node shell element has the same number of degrees of freedom
as the eight-node continuum element, and in the general case identical nodal con-
nectivity within an element, so it is consistent to use the same reference meshes
to define the fractal dimension of a model containing these shell elements.

Fig. 1. Fractal dimension of three simple meshes.

Given that the number of equations N.g is constant, the fractal dimension
reflects the change in mean bandwidth of A as a function of mesh configuration.
Fig. 1 presents the fractal dimension for three simple meshes: a hollow cylinder, an
annulus and a truncated cube. Note that if the annulus is “cut” and opened into
a column, then dy decreases to 1.79. As ds approaches 1.0, two effects combine to
make direct solution more efficient. First, the bandwidth of A decreases, reducing
the operations for direct factorization which are proportional to the bandwidth
squared. Second, for the preconditioners discussed here, the number of iterations
scales with the largest number of nodes along an edge, increasing the cost of PCG.
For a well-conditioned linear problem, PCG/EBE has been observed to be more
efficient than FISSLE for dy >= 1.5; see [Hughes 87| for further discussion.

Numerical Examples. The following calculations illustrate our experience with
applying EBE/PCG to problems utilizing the contact/impact algorithms within
NIKE3D. Except where indicated, all computing was performed on a CRAY X-
MP /48 with a 134 megaword Solid-state Storage Device (SSD) running under
the Livermore Time Share System (LTSS). We are currently using the CFT 1.14
FORTRAN compiler, which utilizes both the bi-directional memory and hardware
gather/scatter capabilities of the X-MP. Unless noted otherwise, all computations
utilized nonlinear and linear iteration tolerances of §5 = 1073 and 6, = 1074,
respectively. The CPU and I/O costs we present are for equation solving costs only,
and include assembly of the global equations for the direct method, but exclude
element formation for all methods. The I/O costs include I/O-related system
charges, which can vary with the level of machine usage. Storage requirements are

in units of 64-bit words.
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o Curved Bar with Symmetry Plane

As a first example we consider the mesh illustrated in Fig 1. Physically, the
problem represents a bar curving 90 degrees in a plane with both ends fixed and
loaded transversely at midspan. Computationally, only 45 degrees are modeled
with a symmetry plane specified at midspan; nodal forces consistent with the
shear stress distribution of a straight beam are applied at this same location.
The model contains 833 nodes, 576 continuum and 49 penalty elements, with
2,352 degrees of freedom and fractal dimension of 2.27. For such a small equation
system we do not expect the iterative methods to be competitive with direct
solution. However, the execution timings in Table 1 serve to illustrate the ability
of the EBE preconditioner to control the ill-conditioning engendered by the large
penalty stiffness of the symmetry plane elements. The graph in Fig. 3 further
highlights the continuous degradation of diagonal scaling as a function of the
penalty parameter, which has a default value of 10® (see Eq. (16)). Again, the EBE
performance is highly insensitive to the choice of penalty parameter. This example
justifies abandoning diagonal preconditioning for problems with symmetry planes.

symmetry
plane

tranversely loaded
on symmetry plane

fixed end

Fig. 2. Curved bar with penalized symmetry plane.

1280

[
2, p
o o Preconditioner
[ 2R O=Diagonal
; o= Crout EBE
c
s gt
-~
[
-
23l 2
° L)
o
)
~
>
< Tt e e e e 00 0O == O = O - -
o - A L i
-4.0 -2.0 0.0 2.0 4.0 6.0

Log(Penalty Parameter)
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Linear | Avg. Iter. | Max. Iter. | CPU

Method Solves | per Solve | per Solve | (sec)
Direct(®) 3 — — 5.3
Diagonal(®) 3 1097.7 1459 35.4
EBE(®) 3 123.7 124 8.5
Diagonal(® 3 255.0 328 8.3
EBE® 3 122.7 129 8.3

269

(@) default penalty parameter, ® penalty parameter reduced by 10 _6.

Table 1. Equation solving data for a curved bar with penalized symmetry plane.

e Pipe Whip Analysis

This analysis represents the first attempt at using NIKE3D’s nonlinear shell
element with PCG solution methods, in this case to model the impact of two steel
pipes. As shown in Fig. 4, the target pipe is fixed at both ends while the other
is rotating about a fixed pivot with a specified initial angular velocity. The model
contains 915 nodes, 840 shell elements and 5,038 degrees of freedom with an initial
fractal dimension of 2.23. The symmetry plane in Fig. 4 is normal to one of the
global coordinate axes, hence the symmetry conditions are trivially enforced with
nodal boundary conditions. Penalty elements arise only from the contact surface
between the two pipes. The contact area remains small throughout the analysis,
resulting in the fractal dimension never exceeding 2.24. The 0.01 second process
is equally subdivided into 200 timesteps, and the magnitude of mesh deformation
is illustrated by Fig. 5.

=

6.625" 0.D.
0.432" thick

/nﬂ pivot

o = 75 rad/sec

Fig. 4. Boundary and initial conditions for pipe whip analysis.
Symmetry enforced with nodal boundary conditions.
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All solutions were performed in core, and the results are summarized in Table
2. The maximum element aspect ratio h¢/t is 4.6, implying the ratio of membrane
to bending stiffness is roughly 20. In many lnear analysis applications, shell
elements with h¢/t > 100 are utilized, and we conjecture that the resulting ill-
conditioning may lead to an unacceptable number of iterations for convergence.
However, the mesh refinement in this problem may be typical of that required to
model nonlinear phenomena, and in this case iterative methods appear to offer
improved efficiency for practical applications. The smaller penalty parameter of
the contact elements prevents a catastrophic degradation of performance for diag-
onal preconditioning. Nonetheless, EBE uses 15 percent less CPU than diagonal
preconditioning and 79 percent less than direct solution. The difference in max-
imum effective plastic strain e? is less than two percent, which is acceptable for
engineering accuracy, but a greater error between direct and EBE/PCG than we
have typically observed. This discrepancy may arise from the large rigid-body mo-
tions which interact with the plastic buckling of the rotating pipe. PCG iteration
converges from largest to smallest eigenvalue, hence the rigid-body response would
be the least well resolved.

No. K |Linear |Avg. Iter. |Max. Iter. [Max. |CPU Core
Method | Forms [Solves | per Solve | per Solve eP (sec) | Storage
Direct 200 413 — — 2954 12203 1,223,269
Diagonal | 200 413 83.0 96 2915 | 542 292,312
EBE 200 412 33.7 40 2907 | 459 549,350

Table 2. Equation solving data for the pipe whip analysis.

Fig. 5. Deformed shapes for pipe whip analysis. Time in

milliseconds.
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¢ O-ring Crush

This analysis concerns the seating of a metallic o-ring used to seal an assem-
bly containing high-pressure gas. The mesh generated by R. A. Bailey (Fig. 6)
contains 4,816 nodes, 3,304 continuum elements and 14,017 degrees of freedom
(ds = 3.01), and utilizes a penalized symmetry plane and several contact surfaces.
The contact surface penalty was increased by a factor of ten and the penalty logic
modified in order to control the potential rigid-body motion of the o-ring at the
start of the analysis. This quasi-static analysis is divided into ten time steps and
is driven both by displacement boundary conditions and concentrated forces ap-
plied to the upper flange. Fig. 7 displays the resulting deformation of the o-ring.
The timings in Table 3 were obtained on an X-MP/416; the larger memory allo-
cation available on this machine permitted the EBE analyses to be run in core.
Initial results with EBE/PCG were disappointing, as the equation solving costs
were equivalent to the direct method. This stems from the extremely inexpensive
resolve capability of direct methods, i.e., for large problems, the vast majority of
CPU cost occurs during Crout factorization of the assembled global stiffness ma-
trix. In contrast, the EBE/PCG algorithm has approximately the same cost for
each linear solve (depending upon the spectral character of the residual). The use
of diagonal scaling was not attempted due to its poor performance with penalized
symmetry planes as noted in the first example.

Fig. 6. Mesh for o-ring crush analysis with exploded view.
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No. K [Linear | Avg. Iter. | Max. Iter. | Max. | CPU | I/O | Total
Method |Forms | Solves | per Solve | per Solve e? | (sec) | (sec) | CPU
Direct | 21 159 — — 1357 [4036 | 58 | 4629
EBE® | 21 150 228.4 278 1357 | 4053 0 | 4639
EBE® [ 21 81 214.4 280 1355 {2113 0 | 2453
EBE® | 19 83 147.3 208 1353 [ 1482 0 | 1847

(a) 10 BFGS updates max., () 5 BFGS updates max., (e 5 BFGS updates max. and PCG tolerance of 10_3.

Table 3. Equation solving data for the o-ring crush analysis analysis.

By default, NIKE3D allows a maximum of ten BFGS updates in the nonlin-
ear iteration before reforming the stiffness matrix. Thus the direct method has
up to ten linear solves over which to amortize the cost of a factorization. For
the EBE procedure, the regularization/factorization costs associated with a stiff-
ness reformation are trivial, hence it is desirable to reform more frequently if this
speeds convergence of the nonlinear iterations, thereby reducing the number of
linear solves. A second EBE analysis was attempted with the nonlinear iteration
limited to a maximum of five BFGS updates prior to reformation of the stiffness
matrix. This strategy reduces the number of linear solves from 150 to 81 with
a corresponding 47 percent reduction in equation solving cost. The third EBE
analysis listed in Table 3 retains the revised BFGS strategy of the second, but
relaxes the linear iteration tolerance &; from 10~* to 102, This leads to a 30
percent reduction in average iterations per solve and eguation solving CPU. This
final analysis requires 60 percent less CPU than the direct method. The larger
PCG tolerance is still sufficient to maintain accuracy, as illustrated by the maxi-
mum effective plastic strain e?. This numerical experiment underscores the need
for automated adaptive selection of convergence tolerances and iteration param-
eters, e.g., number of Quasi-Newton updates, based on communication between
the nonlinear and linear iteration procedures.
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Fig. 7. Initial and final states of o-ring.
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Symmetrized Gauss-Seidel EBE Preconditioner. The previous numerical
examples, and those in [Hughes 87], indicate that Crout EBE/PCG has consid-
erable capability to reduce the equation solving costs in three-dimensional appli-
cations. Indeed, the efficiency of EBE/PCG relative to direct solution increases
with problem size and fractal dimension. One drawback with Crout EBE is the
need to store twice as much element data as with diagonal preconditioning. To
describe an alternative EBE preconditioner, recall the Winget regularized element
matrix associated with the transformed system:

A =14+A°-We (25)
=14 L,(A®) +U,(A®), (26)

where A® = L£,(A®) + D,(A®) + U,(A®) is the sum decomposition of the trans-
formed element matrix. This gives rise to the symmetrized Gauss-Seidel EBE
preconditioner:

Nel 1
Bo-s = [[{I+£3} = J] {x+us, (27)
e=1 e=Ny

where
Le =LA, P?) = (P*)TL,[PAs(P*)T|P,
Uz = U (A, P?) = (P*)TU,[PA°(P)T|P".

In this way only one matrix must be saved for each element, thereby reducing
storage requirements by 50 percent compared to Crout EBE. We emphasize that
a product form has been retained for the operator splitting, but the regularized el-
ement matrices are sum decomposed rather than using the product decomposition
LDyl as in the Crout preconditioner. The permutation matrix P¢ signifies the
same global-to-local reordering and gather/scatter operations previously discussed
for the Crout EBE preconditioner. The proposed symmetrized Gauss-Seidel EBE
preconditioner requires fewer floating-point operations per iteration than its Crout
counterpart. Not only is there no element factorization, but the element diagonal
scaling is eliminated from each preconditioning.

The symmetrized Gauss-Seidel (G-S) EBE preconditioner was previously
compared to the Crout EBE preconditioner in [Hughes 83c] and [Winget 85] on a
small test problem. The Crout EBE preconditioner proved superior. Nevertheless,
given the fact that storage is a prime concern in the analysis of large systems and
that the G-S EBE preconditioner is optimal in this regard, and further that the
present implementation actually decreases operations per iteration compared with
Crout EBE, it seemed worthwhile to re-evaluate it in the context of large-scale
problems. Credit for the original proposal of the G-S EBE preconditioner is due to
Nour-Omid and Parlett [Nour-Omid 85]. Nour-Omid and Parlett refer to it as the
“element splitting” preconditioner. They do not employ the transformed system
or the Winget regularized element array in their approach. Recently, Nour-Omid
and Raefsky have also been employing element splitting in their Lanczos-driven
EBE algorithm [Nour-Omid §6).



274 HUGHES AND FERENCZ

Numerical Examples. The following results compare the performance of the
proposed symmetrized Gauss-Seidel EBE preconditioner with the methods previ-
ously discussed. Timing data for several of these problems appear in [Hughes 87).
Since that work was completed, NIKE3D has undergone revision, in particular a
rewrite of FISSLE’s global assembly algorithm by D. Stillman and the EBE/PCG
procedure has been altered to utilize the transformed equation system (see Eq.
(15)). The use of the transformed residual to monitor convergence has led to small
changes in the iteration counts previously reported. Also, a pronounced gain in
efficiency has resulted from the installation of the CFT FORTRAN version 1.14
compiler at the L.L.N.L. Computer Center, which can utilize the bi-directional
memory and hardware gather/scatter capabilities of the X-MP. In total, we have
observed average speed-ups of 35, 56 and 61 percent for direct solution, diagonal
preconditioning and Crout EBE/PCG, respectively.

o Three-dimensional Boussinesq Problem

This classical linear problem concerns the application of a point load to the
surface of a homogeneous, isotropic elastic halfspace. The simple material model
and use of a uniform cubic mesh (dy = 3) leads to a very well-conditioned problem.
Results from a series of meshes are reported in [Hughes 87]; here we only consider
a 24 x 24 x 24 element mesh with 45,000 degrees of freedom. Table 4 illustrates
the overwhelming CPU and storage advantages of all the iterative methods. Each
requires less than one minute of CPU as compared to about 35 minutes for direct
solution, and even Crout EBE uses an order-of-magnitude less disk storage. The
G-S EBE preconditioner uses five percent less CPU than Crout EBE, reflecting
the absence of any factorization process. The two EBE methods use an average
of 15 percent less CPU than diagonal scaling.

Max. Shear CPU | I/O Core Disk
Method 3(o1 — 03) |Iterations [ (sec) |(sec) | Storage Storage
Direct 910.9 — 2079 [20.0 1,325,000 [82,727,421
Diagonal 910.9 139 36.4 8.5 511,776 4,478,976
Crout EBE 910.9 57 31.7 110.5 556,776 8,957,952
G-S EBE 910.9 57 30.2 J11.1 511,776 4,478,976

Table 4. Equation solving data for 24 x 24 x 24 Boussinesq problem.

o Thermal Stress Analysis of a Slab Laser Lens

The model in Fig. 8 was generated by Susarla Murty to study the thermal
stress response of a proposed lens for the High Average Power (HAP) laser under
development at L.L.N.L. Containing 18,029 nodes, 14,720 elements and 54,084
degrees of freedom, the model has a fractal dimension of 2.40. Although still linear,
this problem presents a greater challenge to the iterative methods because of the
distorted element geometries, and material moduli which vary over three orders
of magnitude. Table 5 summarizes the computational cost of the analyses, and
highlights the increased robustness of the EBE preconditioners relative to diagonal
scaling. In this case the G-S EBE method shows only a marginal decrease in CPU
usage, and the increased 1/0 charge is apparently an artifact of system overhead.
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{a) (b) {c)

Fig. 8. Various views of HAP laser lens model: (a) full mesh,
(b) and (c), rhombic lens with support rails removed.

Max. CPU } I/O Core Disk
Method oy x 107% | Iterations | (sec) | (sec) | Storage Storage
Direct 3.614 — 1159 11.5 817,348 | 64,073,517
Diagonal 3.615 1744 482 106 | 602,196 4,769,280
Crout EBE 3.618 670 358 117 | 656,280 9,538,560
G-S EBE 3.616 645 349 120 ]602,196 4,769,280

Table 5. Equation solving data for slab laser lens thermal stress analysis.

This problem illustrates the importance of the SSD for efficient solution of
large problems with EBE/PCG. Using conventional CRAY DD49 rotating disks,
the EBE I/O cost would approach 2.5 hours for this problem. With competition
from other users for the available I/O ports, wall time of order 10 hours might be
expected—a high price for less than nine minutes of CPU. Besides the equation
solving CPU costs given in Table 5, it is important to note that the bandwidth
minimization operation for direct solution requires an additional 442 seconds of
CPU, while the element blocking for EBE uses less than 1 second.

e Rod Impact

This dynamic nonlinear analysis models the impact of a copper bar with an
initial velocity of 227 m/sec onto a rigid wall. The model contains 3,367 nodes,
2,700 elments, 9,196 degrees of freedom and has a fractal dimension of 2.08. The
mesh does not include any penalty slidesurfaces: nodal boundary conditions con-
strain the impacting face to lie upon the global X-Y plane. The computation is
divided into 80 time steps of 1 microsecond and each method utilizes 81 stiffness
formations. A linear iterative tolerance 6§, = 102 was specified. Execution data
are summarized in Table 6. None of the iterative methods requires more than 25
percent of the direct method’s CPU usage. The iterative data bases can be held in
core, while FISSLE requires a modest 20 seconds of SSD I/0. In this example, G-S
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EBE is only marginally better than diagonal scaling, and uses 19 percent more
CPU than Crout EBE. This degradation appears to result from the substantial
mesh distortion that develops with time (see Fig. 9). Over the first six time steps
the Crout and G-S EBE methods average 14.9 and 17.9 iterations per linear solve,
respectively. Subsequently, these averages rapidly increase to the values in Table
6 as the rod is crushed.

Fig. 9. Initial, intermediate and final deformation states
for the rod impact analysis. Time in microseconds.

Linear | Avg. Iter. | Max. Iter. |Max. |CPU Core Disk
Method | Solves | per Solve | per Solve | e? |(sec) | Storage | Storage
Direct 193 — — 2.249 {1795 [1,958,872 {2,526,617
Diagonal 193 44.1 57 2.245| 434 | 920,255 —
Crout EBE | 195 16.8 22 2.248 371 [1,739,976 —
G-S EBE 192 23.0 33 2.249| 441 | 920,255 —

Table 6. Equation solving data for the rod impact analysis.

e Tunnel Intersection

The stress field about intersecting tunnels in geological material is under
study at Los Alamos National Laboratory. The mesh in Fig. 10 was developed by
R. Rosinsky of L.L.N.L. as a prototype to evaluate our iterative algorithms. Triple
symmetry is used to model two 130 inch radius tunnels in a 600 x 600 x 600 inch
block of rock subjected to a uniform hydrostatic pressure of 100 psi. The mesh
contains 11,713 nodes, 10,240 elements, 34,272 degrees of freedom with dy = 3.02.
The problem was first analyzed using a mesh with uniformly spaced elements; the
resulting timings are listed in Table 7. With a well-conditioned problem, we would
anticipate the number of EBE iterations to be on order of three times the maximum
number of nodes along an edge (and six times for diagonal scaling). For the tunnel
mesh this predicts 3 x 25 = 75 iterations, agreeing well with the Crout EBE data.
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Fig. 10. Two views of tunnel intersection mesh with
10:1 element aspect ratio.

Min. CPU | I/O Core Disk
Method o3 | Iterations | (sec) | (sec) | Storage Storage
[ Direct —476.5 — 1836 | 8.8 |1,432,928 | 53,973,073
Diagonal —476.5 204 39.9 7.8 468,864 3,317,760
Crout EBE | —476.5 76 31.6 9.8 503,136 6,636,520
G-S EBE —476.5 83 32.1 9.7 468,864 3,317,760

Table 7. Equation solving data for tunnel intersection
with unitary element aspect ratios.

The poorer performance of G-S EBE and diagonal preconditioning is thought to
arise from the modest element distortions resulting from the intersection geometry.

To study the effect of mesh distortion, a series of analyses were performed on
meshes with evenly graded mesh transitions from the tunnel intersection outward.
The measure of distortion was taken as the largest to smallest element length
along an edge, which is nearly equivalent to the maximum element aspect ratio
in the mesh. The mesh in Fig. 10 corresponds to an aspect ratio of ten, while we
emphasize that the data in Table 7 are for an aspect ratio of one. The perfor-
mance of the iterative methods is summarized in Fig. 11. The number of Crout
EBE iterations increases at a slightly faster rate than diagonal scaling. G-S EBE
displays the most distortion sensitivity. The graph of CPU time shows a crossover
at an aspect ratio of 20, where diagonal scaling becomes the most efficient solver.
G-S EBE is the least efficient method for aspect ratios greater than five. Although
very large aspect ratios are not advisable in practice, the “survival” of diagonal
scaling as the most efficient method runs counter to our expectations and previ-
ous experience. One may speculate that for such heavily distorted elements the
regularized element matrices convey too little information to justify the expense
of element forward reduction and back substitution.



278 HUGHES AND FERENCZ

o o
-4 e
Preconditioner Preconditioner
g| colmsnns 0zt
S a=0-8 EBE _—t s A= Q-8 EBE &
gl
® o -3 R
E8f A 2
= A o 5 /cf
: ° u} A " ©
-1 E( Lo *
2w~ . o a
LT LT =
0. D
Lo x
r-9 o L — o 1 N L
0 10 20 30 40 [ 10 20 30 40
Element Aspect Ratio Element Aspect Ratlo

Fig. 11. Iterations and CPU cost for tunnel intersection
analysis as a function of element aspect ratio.

Conclusions. We have presented two EBE/PCG algorithms capable of very sig-
nificant reductions in the CPU and storage charges for equation solving compared
with techniques based upon Gauss elimination in implicit finite element calcula-
tions. By utilizing a local, element-based data structure, these preconditioners
should simplify the task of mapping complex meshes arising from engineering ap-
plications onto emerging multiprocessor architectures.

The Crout EBE procedure has been extended to the shell element and con-
tact/impact algorithms within NIKE3D, and results to date indicate considerable
increases in efficiency are attainable. The Crout EBE preconditioner has shown
superiority over the diagonal preconditioner in most situations. It has been noted
that diagonal preconditioning degrades markedly for symmetry plane elements
whereas the Crout EBE preconditioner is essentially insensitive to the value of
the penalty parameter. The solution of problems requiring many nonlinear iter-
ations for convergence exposes a need to begin developing an adaptive iteration
strategy that seeks to minimize the total cost of the nonlinear and linear iterative
procedures.

The symmetrized Gauss-Seidel EBE preconditioner appears competitive with
Crout EBE for moderately ill-conditioned problems while utilizing no more storage
than diagonal preconditioning. It displays more distortion sensitivity than its
Crout counterpart and presently this behavior is not understood. The Gauss-Seidel
preconditioner has not yet been extended to contact/impact and shell problems.
Given its more rapid degradation when faced with ill-conditioning, we are not
optimistic that it will be successful in these situations.

The development of EBE-based methods is continuing within the production
code environment of NIKE3D. We believe use of fractal dimension, among other
parameters, will eventually provide an a priori indication of the regime for which
iteration is more cost-effective than direct solution and will lead to automatic cri-
teria for selecting the most appropriate equation solving algorithm. We also feel
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that considerable gains in efficiency can be registered by adopting the precondi-
tioned Lanczos algorithms in place of PCG, as indicated in the recent studies of
Nour-Omid and Raefsky [Nour-Omid 86).

Acknowledgement. The authors would like to express their sincere apprecia-
tion to Dr. Gerald L. Goudreau, Group Leader, Methods Development Group,
L.L.N.L., for his support of the research presented herein. The first author also
gratefully notes the support of Dr. Alan Kushner, Scientific Officer, U.S. Office of
Naval Research.

References

[Hallguist 83] J. O. Hallquist, NIKE2D—A Vectorized, Implicit, Finite Deforma-
tion, Finite Element Code for Analyzing the Static and Dynamic Response of 2-D
Solids, University of California, UCID-19677, 1983.

[Hallguist 84} J. O. Hallquist, NIKESD: An Implicit, Finite Deformation, Fi-
nite Element Code for Analyzing the Static and Dynamic Response of Three-
Dimensional Solids, University of California, UCID-18822, Rev. 1, 1984.

[Hallquist 85] J. O. Hallquist, G. L. Goudreau and D. J. Benson, Sliding Interfaces
with Contact-Impact in Large-Scale Lagrangian Computations, Computer Methods
in Applied Mechanics and Engineering, 51 (1985), pp. 107-135.

[Hestenes 52] M. R. Hestenes and E. Stiefel, Method of Conjugate Gradients for
Solving Linear Systems, Journal of Research of the National Bureau of Standards,
49 (1952), pp. 409-436.

(Hughes 79] T. J. R. Hughes, K. S. Pister and R. L. Taylor, Implicit-Ezplicit
Finite Elements in Nonlinear Transient Analysis, Computer Methods in Applied
Mechanics and Engineering, 17/18 (1979), pp. 159-182.

(Hughes 83a] T. J. R. Hughes, I. Levit and J. M. Winget, Implicit, Uncondition-
ally Stable Algorithms for Heat Conduction Analysis, Journal of the Engineering
Mechanics Division, ASCE, 109 (1983) pp. 576-585.

[Hughes 83b] T. J. R. Hughes, L. Levit and J. M. Winget, An Element-by-Element
Solution Algorithm for Problems of Structural and Solid Mechanics, Computer
Methods in Applied Mechanics and Engineering, 36 (1983), pp. 241-254.

[Hughes 83¢] T. J. R. Hughes, J. Winget, I. Levit and T. Tezduyar, New Alternat-
ing Direction Procedures in Finite Element Analysis based upon EBE Approzimate
Factorizations, in Computer Methods for Nonlinear Solids and Structural Mechan-
ics, S. N. Atluri and N. Perrone eds., AMD-Vol. 4, ASME, New York, 1983, pp.
75-109.

[Hughes 84a] T. J. R. Hughes, A. Raefsky, A. Muller, J. M. Winget and I. Levit,
A Progress Report on EBE Solution Procedures in Solid Mechanics, in Numerical
Methods for Nonlinear Problems, Vol. 2, C. Taylor et al., eds., Pineridge Press,
Swansea, U.K., 1984, pp. 18-26.

[Hughes 84b] T. J. R. Hughes, Numerical Implementation of Constitutive Mod-
els: Rate-independent Deviatoric Plasticity, in Theoretical Foundations for Large-
Scale Computations for Nonlinear Material Behavior, S. Nemat-Nasser et al., eds.,



280 HUGHES AND FERENCZ

Martinus Nijhoff, Dordrecht, The Netherlands, 1984, pp. 29-57.

(Hughes 87) T. J. R. Hughes, R. M. Ferencz and J. O. Hallquist, Large-scale Vec-
torized Implicit Calculations in Solid Mechanics on a CRAY X-MP/4{8 Utilizing
EBE Preconditioned Conjugate Gradients, Computer Methods in Applied Mechan-
ics and Engineering, 61 (1987), pp. 215-248.

(Lyzenga 87] G. A. Lyzenga, A. Raefsky and B. H. Hager, Fintte Elements and the
Method of Conjugate Gradients on a Concurrent Processor, in Solving Problems
on Concurrent Processors, Volume 2: Scientific and Engineering Applications, J.
Fox and G. A. Lyzenga eds., Prentice-Hall, Englewood Cliffs, in press.

[Newmark 59] N. M. Newmark, A Method of Computation for Structural Dynam-
ics, Journal of the Engineering Mechanics Division, ASCE, 85 (1959), pp. 67-94.

[Nour-Omid 85] B. Nour-Omid and B. N. Parlett, Element Preconditioning Using
Splitting Techniques, SIAM Journal on Scientific and Statistical Computing, 6
(1985), pp. 761-770.

[Nour-Omid 86] B. Nour-Omid and A. Raefsky, private communication, 1986.

[Ortiz 83] M. Ortiz, P. M. Pinsky and R. L. Taylor, Unconditionally Stable
Element-by-Element Algorithms for Dynamics Problems, Computer Methods in
Applied Mechanics and Engineering, 36 (1983), pp. 223-239.

[Taylor 81] R. L. Taylor, E. L Wilson and S. J. Sackett, Direct Solution of Equa-
tions by Frontal and Variable Band, Active Column Methods, in Nonlinear Finite
Element Analysis in Structural Mechanics, W. Wunderlich et al., eds., Springer-
Verlag, Berlin, 1981, pp. 521-552.

[Winget 85] J. M. Winget and T. J. R. Hughes, Solution Algorithms for Nonlin-
ear Transient Heat Conduction Analysis Employing Element-by-Element Iterative
Strategies, Computer Methods in Applied Mechanics and Engineering, 52 (1985),
pp. 7T11-815.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 

